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Introduction

* Global and US COVID situation
« Concerns over the accuracy of the numbers,
the test
“*Molecular test / PCR tests (Nasal/Throat
swab or saliva)
FN (2% and 37%)
s Antigen test (Nasal/Throat swab):
cheapest and fastest
FN (0% - 50%)
s Antibody tests (Blood test)
FN (0 — 30%)
s Large numbers of asymptomatic cases
« Diamond Princess cruise ship
passengers (46.5%)
* Prison inmates (96%)
» Poston homeless shelter (87.8%)
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Source: Johns Hopkins Coronavirus Resource Center

Use measurement science (accounting), and assurance science (auditing) to examine the situation




Research objective

Continuous Intelligent Pandemic Monitoring (CIPM)

s Utilizing various exogenous data to perform predictive analytics to validate the official
disclosed epidemic numbers

s Performing cross-sectional analytics to identify significant variables that could impact
the disease severity

¢ Assessing the disease severity level by utilizing Clustering approach

“*Providing guidance for policymakers based on simulations of different preventive
actions




Clustering

Model construction

* Model 1
» Utilize different exogenous variables to predict confirmed cases, mortality, percentage of positive test
« Compare the predicted number to reported number to determine the reasonableness of public data

* Model 2

« Utilize government’s open data to identify demographic features that could have significant impact on the
pandemic

* Incorporate migration data to the model

» Clustering approach
> Categorize counties into different clusters based on significant features
»Measure the centroid point distance to determine the disease severity of the counties
> ldentify the counties that are highly susceptible to disease severity
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» Model 3
» Utilize identified significant factors and regional characteristics to simulate the Epidemic models (SEIQHRF)
* Provide guidance to policy makers
v"Masks requirements
v'Social distancing




Model 1. Time Series Model Predictions

Time series model:
ARIMA

“ With 30-day sliding
window approach to assess
the reasonableness of the
number

» Confirmed case

» Mortality

* The percentage of
positive cases

Dataset time
period

% 9/5/2020 — 10/4/2020
training set

%+ 10/5/2020 — 10/11/2020
testing set - prediction
window

Endogenous and

Exogenous Data

¢ Endogenous Data
* NYC Open Data
* NJ COVID-19
Information Hub
« Johns Hopkins University
data portal

¢ Exogenous Data
 Google trends
* Apple Mobility report
 Subway Turnstile
* OpenTable
* Daily News Economic
Sentiment Index




> Model 2. Clustering Approach

» Perform cross-sectional analytics to identify potential high
risky cities by using clustering analysis
« All countiesin NY & NJ

Population
Population Density

Persons age 65 years and over, percent

Average household income

Persons in poverty, percent

Persons per household

Persons with a disability, under age 65 years, percent
Community Resilience Estimate

Mobility Data
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Model 3. Epidemic Simulation

Using SEIQHRF model to simulate the impact of preventive policies
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Time Series Model - NYC

Forecast Days
Figure 2-3: Predicted Positive Test Cases vs Actual Positive Test Cases
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Figure 2-4: Predicted Positive Test Ratio vs Actual Positive Test Ratio




Time Series Model - NJ
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Figure 3-3: Predicted Positive Test Cases vs Actual Positive Test Cases Figure 3-4: Predicted Positive Test Ratio vs Actual Positive Test Ratio




> Clustering

« Method: according to Silhouette Score, the proper number of clusters is equal
to 2; then K-means is conducted to identify peer city groups that may have
similar vulnerability to the pandemic.

Clustering Result
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Figure 3: Clustering results




> Clustering

« Which city group is more susceptible to disease severity: we use the

confirmed cases (as of 10/12) as the metric to measure disease severity

Cluster_distance 0 The distance between the data point and the centroid point of
“Cluster 07

Cluster_distance 1 The distance between the data point and the centroid point of
“Cluster 17

Cluster ID The Cluster ID: 0, 1

* Reqgression results:

Coefficients:
Estimate std. Error t value Pr(|t])

(Intercept) 9.2448 1.2301 7.515 8.13e-11 *¥%%*
Cluster_distance_0 -3.9827 1.9240 -2.070 0.0418 *
Cluster_distance_1 2.7552 1.5153 1.818 0.0729 .
Clusterl -0.5989 1.003¢9 -0.597 0.5526

Signif. codes: O ‘***’ Q0.001 “**’ 0.01 “*’ 0.05 ‘.7 0.1 °* 7 1




> Clustering

« Method: according to Silhouette Score, the proper number of clusters is equal
to 2; then K-means is conducted to identify peer city groups that may have
similar vulnerability to the pandemic.

Clustering Result
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Simulations

Baseline vs Increasing self-isolation and social distancing Baseline vs Increasing social distancing only
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[> Contribution & Conclusion

« Examine the pandemic situation from the perspective of accountants and
auditors

« CIPM can be used to continuously monitor the pandemic and generate alerts

 Support government decision-making

— Validating the reasonableness of the current epidemic numbers by utilizing exogenous data

¢ Unreasonable trend of recorded information could have significant negative impact on decision
making

— Assessing the disease severity level by utilizing Clustering method
+¢ Pinpoints the specific cities that are highly susceptible to disease severity
— Providing guidance for policymakers based on simulations of different preventive actions
¢ Provide simulation results based on current and forthcoming policies

+» lllustrate the timing impact of the policy implementation




Thank You!

Contact us at:
kelly.duan@rutgers.edu
hanxin.hu@rutgers.edu
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